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Abstract

The best arm identification problem requires iden-
tifying the best alternative (i.e., arm) in active ex-
perimentation using the smallest number of exper-
iments (i.e., arm pulls), which is crucial for cost-
efficient and timely decision-making processes.
We consider the fixed confidence setting where an
algorithm repeatedly selects arms until it decides
to stop and then returns the estimated best arm
with a correctness guarantee. Since this stopping
time is random, we desire its distribution to have
light tails. Unfortunately, many existing studies
focus on guarantees that hide the issue of allow-
ing heavy tails or even not stopping at all. Indeed,
we show that the never-stopping event can indeed
happen for standard algorithms. Motivated by
this, we make two theoretical contributions. First,
we show that there exists an algorithm that attains
a desirable exponential-tailed stopping time guar-
antee that is strictly better than the polynomial
tail bound of Kalyanakrishnan et al. (2012) and
the exponential guarantee obtained by uniform
sampling. Our guarantee is more fundamental
than existing ones in the sense that our guarantee
implies that it achieves existing optimal guaran-
tees up to logarithmic factors. Second, we show
that there exists a meta algorithm that takes in any
fixed confidence algorithm with a high probabil-
ity stopping guarantee and turns it into one that
enjoys an exponential-tailed stopping time with
a matching instance-dependent complexity up to
logarithmic factors. Our results imply that there
might be much more to be desired for contempo-
rary fixed confidence algorithms.
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1. Introduction

The multi-armed bandit model serves a foundational frame-
work for studying sequential decision-making under un-
certainty. In this framework, a learner interacts with an
environment by sequentially selecting among multiple alter-
natives (arms) and observing stochastic rewards, allowing
for the rigorous analysis of fundamental trade-offs inher-
ent in sequential decision-making. A core problem within
this theoretical landscape is best arm identification, which
focuses on identifying the arm associated with the highest
mean reward, either with a pre-specified confidence level or
within a pre-specified sampling budget, known as the fixed
confidence setting and fixed budget setting, respectively.

While the fixed confidence setting has conceptual connec-
tions to applications such as A/B/../K testing, the focus of
this work lies in the more general and theoretical side, adap-
tive fixed confidence best arm identification setting, where
arm pulls are assigned adaptively based on the outcomes
of previous pulls. The advantage of adaptive assignment is
that it often results in significantly lower sample complexity
compared to non-adaptive assignment.

Therefore, many works have proposed algorithms and
proved bounds on how many samples they use until stop-
ping (i.e., sample complexity) either with high probability
or in expectation (Even-Dar et al., 2006; Karnin et al., 2013;
Jamieson et al., 2014). However, most existing sample com-
plexity guarantees do not sufficiently describe the behavior
of the stopping time. For instance, an algorithm might
be guaranteed to stop before 7 samples with probability
at least 1 — 0, but with probability up to ¢, the algorithm
may never stop or stop only after a very long time, much
larger than 7. Algorithms with expected sample complex-
ity guarantees will stop, but the tail of the distribution of the
stopping time can be very thick. Thus, the realized stopping
time can be significantly larger than the expected one, which
is undesirable. These issues have been under-explored in
the literature.

To address this gap, we push the limits of attainable guaran-
tees for the tail decaying rate of stopping time distribution
of fixed confidence best arm identification algorithms. To
the best of our knowledge, aside from LUCB by (Kalyanakr-
ishnan et al., 2012) with a polynomial-tailed stopping time
bound, there has been no significant study on the tail of the
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stopping time distribution.! In particular, there are no re-
sults in the literature reporting an exponential tail bound for
the stopping distribution except for the uniform sampling.
However, uniform sampling is widely regarded as naive due
to its inability to adaptively assign arm pulls.

In this paper, we make several key contributions towards
strengthening guarantees for the stopping time distribution,
which we summarize as follows:

* Theoretical Evidence of a Limitation in Existing
High-Probability Guarantees: We demonstrate that
both Successive Elimination (Even-Dar et al., 2006)
and KL-LUCB (Tanczos et al., 2017), despite enjoying
high-probability guarantees, they will not stop at all
with a constant probability. To ourknowledge, this
is the first such evidence in the literature for fixed
confidence algorithms.

* First Theoretical Work Establishing the Possibility
of an Exponential-Tailed Stopping Time: We present
a fixed-confidence variant of Double Sequential Halv-
ing (FC-DSH), an algorithm that combines the Sequen-
tial Halving approach with the doubling trick and a
carefully designed stopping rule. Our analysis shows
that FC-DSH achieves an exponential-tailed stopping
time with a matching instance-dependent complexity
up to logarithmic factors. To our knowledge, this is the
first such guarantee in the literature.

¢ Introducing BrakeBooster: A Meta-Algorithm for
Achieving Exponential-Tailed Stopping Time: Mo-
tivated by our success with FC-DSH, we take a step
further and propose a novel meta-algorithm approach.
This approach takes in any fixed confidence algorithm
that meets mild conditions and and turns it into an
algorithm with an exponential tail guarantee for the
stopping time.

Table 1 presents a comparison of popular FC-BAI algo-
rithms, highlighting our theoretical contributions to the FC-
DSH and BrakeBooster algorithms in achieving exponential-
tail stopping time. We want to clarify that our objective is
not to improve the computational complexity or practical
performance of existing FC-BAI algorithms. Instead, our
work demonstrates that an exponentially decaying tail with
a matching instance-dependent complexity (up to logarith-
mic factors) for the stopping time distribution is achiev-
able. Also, we focus on FC-DSH due to its simplicity and
widespread adoption in practice (e.g., in Hyperband (Li
et al., 2018)). The computational efficiency of FC-DSH’s is
not worse (orderwise) than other algorithms.

"While AT-LUCB (Jun & Nowak, 2016) showed a tail bound
that decays exponentially, the bound is exponential in /% rather
than ¢, which does not fit Definition 1. Furthermore, the correctness
is questionable, specifically, the paper’s Lemma 7 and 8 is likely
to be false.

2. Problem Definition and Preliminaries

We consider the standard K-armed bandit setting, where
a learner sequentially selects one of K arms where each
arm 4 € [K] is associated with a reward distribution v; that
is 1-sub-Gaussian (known) with mean p; (unknown). We
assume that there exists a unique best arm, which is stan-
dard (Audibert et al., 2010). Without loss of generality, we
assume that the arms are ordered in decreasing order of their
mean rewards, i.e., i1 > g > --- > px. Ateach time step
t, the learner selects an arm A; € [K] := {1,2,..., K},
then observes a reward r; ~ v4,. We consider the fixed con-
fidence setting, where the learner aims to identify the best
arm with a pre-specified confidence level § € (0,1) that is
also called failure rate. The goal is to design an algorithm
A that includes a sampling rule choosing A;, a stopping
rule that determines when to stop, and a recommendation
rule that outputs the estimated best arm J(A) when stop-
ping. We denote by 7(.A) the (random) stopping time of the
algorithm A, which is the arm pulls that .4 makes before
the algorithm stops. We often omit the dependence on the
algorithm A and use 7 and J when the algorithm being used
is clear from context.

An algorithm for the fixed confidence setting is required to
satisfy the following correctness result.

Definition 2.1 (§-correct). A fixed confidence algorithm is
said to be §-correct if it takes J as input and satisfies

P(r <oo,J #1)<4.

We call such an algorithm §-correct. Note that the condition
7(A) < oo above is necessary since J(A) is undefined
otherwise.

Furthermore, we desire the algorithm to stop as early as
possible in addition to being J-correct. There are two cri-
teria that have been popular in the literature: asymptotic
expected sample complexity? and high probability sample
complexity.

The asymptotic expected sample complexity (Chernoff,
1959; Garivier & Kaufmann, 2016; Shang et al., 2020; Qin
et al., 2017) characterizes the asymptotic behavior of the
stopping time as ¢ goes to 0 as follows:

Definition 2.2 (Asymptotic expected sample complexity).
A fixed confidence algorithm is said to have an asymptotic
expected (AE) sample complexity of T if it satisfies
E[7]
liminf ——— < T¥
B0 n(1/0) = 0

where 7 depends on §.

The optimal guarantee has been well-understood for expo-
nential family reward models (Garivier & Kaufmann, 2016).
For example, Track-and-Stop (Garivier & Kaufmann, 2016)

2Recently, Jourdan & Degenne (2023) analyzed the non-
asymptotic expected sample complexity.
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Table 1. Comparison of guarantees.

Exponential-tailed | High probability | Asymptotic expected Meta
stopping time sample complexity | sample complexity | algorithm
Successive Elimination X X X
(Even-Dar et al., 2006)
LUCB
(Kalyanakrishnan et al., 2012) Unknown X
Track-and-Stop
(Garivier & Kaufmann, 2016) Unknown Unknown X
Top Two algorithms
(Jourdan et al., 2022) Unknown Unknown X
TTUCB
(Jourdan & Degenne, 2023) Unknown Unknown X
FC-DSH (our work)
BrakeBooster (our work)

achieves the optimal asymptotic expected sample complex-
ity.

However, the AE sample complexity has two limitations.
First, the AE sample complexity does not tell us anything
about the tail of 7. In fact, 7 can still be heavy-tailed as
empirically observed by Jourdan et al. (2022, Figure 4, EB-
TC) despite having a near-optimal AE sample complexity.
Second, the AE sample complexity hides potentially bad
behaviors of the algorithm in the non-asymptotic regime or
with moderately small §. That is, the AE sample complexity
hinges on the behavior of the algorithm when § close enough
to 0, in which case the algorithm would be running for a
very long time. Indeed, one can observe that if E[7] ~
Aln(1/6) + B for some A and B that are not dependent on
0, the value of lim infs_,q % will be independent of B
even if B is very large.

On the other hand, high probability sample complexity guar-
antee (Even-Dar et al., 2006; Karnin et al., 2013; Jamieson
et al., 2014; Jun et al., 2016; Tanczos et al., 2017), defined
below, does not rely on the asymptotic behavior of the algo-
rithm.

Definition 2.3 (High probability sample complexity). A
fixed confidence algorithm is said to have a sample com-
plexity of T if it takes 6 € (0, 1) as input and satisfies

P(r>TF)<6.

For example, Successive Elimination (Even-Dar et al.,
2006) achieves a high probability sample complexity of
O(H,1n(1/5)) where H, := ZZK:2 A;? characterizes the
instance-dependent complexity of the problem and O omits
logarithmic factors except for In(1/4). Despite being non-
asymptotic, we find the high probability sample complexity
weak and rather unnatural for the following reasons:

¢ First, we find it unnatural that ¢, the failure rate re-
garding the correctness of the output J, is also the

target failure rate with which we bound the sample
complexity. In practice, one may desire to be loose
on the correctness (large §) yet want to ensure that the
stopping time is small with very high confidence (small
). We speculate that the high probability sample com-
plexity is a mere byproduct of easy analysis.

» Second, more importantly, the guarantee above does
not tell us about the shape of the tail of the stopping
time. In particular, the high probability sample com-
plexity guarantee does not exclude the possibility of
never stopping even if the problem at hand is easy,
which is a serious issue as it would imply that the prac-
titioner will have to wait forever or forcefully stop the
active experimentation procedure (See Figure 1). It
also follows that the expected stopping time E[7] does
not exist.

To further demonstrate the issue of having an extremely bad
tail for the stopping time distribution, we provide a lower
bound for the Successive Elimination algorithm (Even-Dar
et al., 2006). Hereafter, all the proofs are deferred to the
appendix unless stated otherwise.

Theorem 2.4. For Successive Elimination, there exists an
instance with a unique best arm where the algorithm never
stops with a non-negligible probability of §) (5118).

Although the probability bound established in Theorem 2.4
appears to be very small, it is just the looseness of the
analysis, and in fact, the fraction that does not stop is quite
nontrivial over a wide range of values of §. See Figure 2.

We show that the same is true for KL-LUCB (Tanczos et al.,
2017).

Theorem 2.5. For KL-LUCB, there exists an instance with
a unique best arm where the algorithm never stops with a
constant probability.

Remark 2.6. One way to stop the algorithm from infinitely
running is to allow e-slack in the stopping condition as done
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Figure 1. Historgram of stopping times of Successive Elimina-
tion (Even-Dar et al., 2006) out of 1000 independent trials on
three arms with mean rewards of {1.0,0.9,0.9} and Gaussian
noise A/(0, 1). We forcefully terminated the runs that do not stop
until 30,000 time steps (6 = 0.01). We have observed that all these
runs have already eliminated the best arm, and thus we expect that
many of them will never stop.
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Figure 2. Percentages of trials that fails to terminate as a function
of varying § values over the range [107°, ..., 10™!]. Results from
100K trials of Successive Elimination algorithm

in, e.g., Kalyanakrishnan et al. (2012). However, one can
also extend the arguments in Theorem 2.4 and 2.5 to show
that the stopping time can be as large as O (K /c?) even if
the guaranteed high probability sample complexity is sig-
nificantly smaller than © (K /e?), and this gap can be made
arbitrarily large. Furthermore, we conducted experiments
(see Appendix D), to compare the stopping time distribution
before and after introducing e-slack stopping condition for
Successive Elimination (Even-Dar et al., 2006). The e-slack
variant achieves a weaker exponential-tail (similar to naive

uniform sampling). In this paper, we focus on the best arm
identification to keep the discussion concise.

Meanwhile, the seminal work by Kalyanakrishnan et al.
(2012) has proposed an algorithm called LUCBI1 that satis-
fies the following polynomial tail guarantee on the stopping
time, which is adapted for the best arm identification prob-
lem rather than the e-optimal arm identification.

Theorem 2.7 (Adapted from Kalyanakrishnan et al. (2012)).
Let T* = |[146H;1In (fgl)-‘ For every T > T%*, the

probability that LUCBI has not terminated after T' samples
is at most ,j,*,—i.

This makes us wonder if it is possible to achieve an
exponentially-decaying tail bound for the stopping time
7, which we believe is important in practice as well. We
formalize the desired property in the following definition
where z = polylog(T) means z < alog®(T") + ¢ for some
absolute and positive constants a, b, and c.

Definition 2.8 ((T, x)-exponential stopping tail). A fixed
confidence algorithm is said to have a (T}, k)-exponential
stopping tail if there exists a time step 15 and a problem-
dependent constant £ > 0 (but not dependent on 7") such
that forall T > Ty,

T
P(r>T) <exp <m-m1ylog(T)> . v

This property requires a tail bound for every large enough
T, which reveals detailed information about the distribution
function of 7. Perhaps not surprising, this requirement is
strictly stronger than the high probability sample complexity
above and implies a few desirable properties regarding the
stopping time 7 as we summarize below.

Proposition 2.9. If a fixed confidence algorithm A has
(Ts, k)-exponential stopping tail, then the following hold
true:

(@) P (7 > Ts + xn(1/6) - polylog(rIn(1/4))) < 6.
(#7) E[r] < Ts + & - polylog(k).
(iii) P(r < 00) = 1.
Proof. For (i), find T that would make the RHS of (1)
below 4. For (ii), use the identity E[X] = > >° [ P(X >
x). For (#it), use the Borel-Cantelli lemma. O

While the guarantees above can be individually satisfied
by a specific criterion such as high probability or expected
sample complexity, Proposition 2.9 shows that enjoying
an exponential tail guarantee implies all three desirable
properties simultaneously.

One can show that the naive uniform sampling algorithm
that chooses arm A; = 1 + ((¢ — 1) mod K) at time
t with a suitable stopping condition results in (7}, x)-
exponential stopping tail with T; = O(KA;?In(1/6))
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Algorithm 1 FC-DSH

Input: A set of K arms, §
Ty = [Klog, K|

Ty = Ti2m7 1 ¥m > 2
signed to phase m

L = [logy(K)|  // the last stage in each phase
form=1,2,...do

// the sampling budget as-

// phase m

Reset A; = [K]

for/=1,...,Ldo
// stage ¢

Sample each arm i € A, for N(™%) times where

T
(m.6) _ m
N \‘KQE“ ﬂogg(K)]J '

Let Ay be the set of {Ag / 21 arms in Ay with the
largest empirical means computed using samples
from this stage only.

end for

Select J,,, as the only arm in Ay,.
/I stopping rule

if L7 > max U™ then
m i# I T
Stop and output J,,,.

end if
end for

and k = O(KA5"'). However, by Proposition 2.9, this
guarantee is converted to a high probability sample com-
plexity of O(KA;?1n(1/6)), which is much worse than

O(H;1n(1/6)) achieved by Successive Elimination.

The complexity of a best-arm identification problem is of-
ten characterized by instance-dependent quantities, such
as Hy := Yi*; A;? and Hy = max[C,iA;? (Audibert
et al., 2010). These two quantities are equivalent up to a
logarithmic factor, as captured by the inequality:

Hy < Hy <log(2K)H>. )
We thereby ask if it is possible to achieve
(6(H,In(1/6)), O(H;))-exponential stopping tail,
or perhaps a looser form (©(Hz1n(1/9)), O(Hz)). We
answer this question in the affirmative by proposing two

algorithms in the following two sections.

3. Fixed-Confidence Doubling Sequential
Halving (FC-DSH)

In this section, we introduce FC-DSH, a fixed-confidence
variant of the Doubling Sequential Halving (DSH) al-
gorithm, motivated by its fixed-budget counterpart (FB-
DSH) proposed by Zhao et al. (2023). We show that FC-
DSH satisfies the correctness guarantee and achieves an

(©(Hzlog(1/0)), O(Hz))-exponential stopping tail.

The DSH algorithm combines the Sequential Halving (SH)
procedure (Karnin et al., 2013) with the doubling trick. It
proceeds in iterative phases, with each phase running an
independent instance of SH. The budget allocation follows a
doubling schedule, starting with budget T = [ K log,(K)]
for phase 1 and doubling for subsequent phases, i.e., T;, =
2m~1T, for phase m > 2.

FC-DSH fundamentally differs from its fixed-budget coun-
terpart (FB-DSH) in how termination is handled. FB-DSH
is provided with a pre-specified budget and terminates once
this budget is exhausted. Conversely, FC-DSH operates
with a given confidence level 4 € (0, 1) and terminates once
a carefully designed stopping rule is satisfied. Our stopping
rule is designed to ensure both §-correctness and the desired
(T, k)-exponential stopping tail guarantees. In what fol-
lows, we introduce additional notation and formally define
our stopping rule.

During the phase m, for any arm ¢ € [K], let ¢; denote
the stage at which arm ¢ is eliminated. At this point, arm ¢

has been sampled N (™) times and has received rewards
N(m5)

(m)
{ri,j f j=1
empirical mean of arm ¢ as:

. Based on these rewards, we define the

N(mty)

cmy 1 (m)
Fi = Nt Z Tij
j=1
and its confidence width as:
m 2 6K |1 K 2
B log [ 8K [loga ()| m2)
T N(m,Zl) 6

Using these quantities, we define the upper and lower confi-
dence bounds for arm ¢ as:

U™ = pm 4™ and L™ =
At the end of phase m, the corresponding SH instance se-

lects an arm, denoted by J,,,. We formally define the stop-
ping rule as:

A _ ).

7 2

L(m) > U(m) 3
Jm 2 WAxU; 3)

The rule ensures that, with high probability, the selected arm
Jmn, 1s statistically significantly better than all other arms.
The full algorithm is presented in Algorithm 1.

The following theorems show that DSH satisfies the correct-
ness guarantee and enjoys an exponential stopping tail.

Theorem 3.1 (Correctness). FC-DSH runs with confidence
level § is §-correct.

Theorem 3.2 (Exponential stopping tail). FC-DSH enjoys

(©(Hzlog(1/0)), O(Hz))-exponential stopping tail.

Theorem 3.2 establishes the existence of a fixed-
confidence best-arm identification (FC-BAI) algorithm
with an exponential stopping tail, characterized by

(©(Hylog(1/0)), O(Hsy)). While this bound is not tight,
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it marks the first step toward demonstrating that such an
exponential stopping tail is indeed achievable.

The formal proofs are deferred to Appendix B.1 and B.2
respectively. Here, we highlight the key ideas underlying
the proof of Theorem 3.2. The main objective is to bound
the probability that, for all phase m such that T,,, > T, FC-
DSH fails to satisfy the stopping rule given by Equation (3).
This event can be decomposed based on whether the selected
arm J,,, is optimal:

P (Lff:) < max Ui(m))

m

—Pp (Lf,? < max U™, J,, # 1)

1FJIm

+P (Lf;z) < max U™ = 1>

The first term implies the event where FC-DSH fails to
identify the optimal arm; bounding this event, P (J,,, # 1),
is well-studied in BAI literature.

The second term, where the stopping rule is not met despite
the optimal arm is being selected, is more challenging and
requires a finer-grained analysis. To handle this case, we ex-
amine how long suboptimal arms survive in the elimination
process during phase m.

Recall that, for any arm i € [K], ¢; denotes the actual
stage at which arm 1 is eliminated. We define the expected
elimination stage £ to be the largest stage index satisfying
A; < %A%_Q—Ei-}—l. If no such £ exists, it implies that A; >
A%, indicating that arm ¢ has a sufficiently large suboptimal
gap and should be eliminated early. For arms with a valid ¢},
we further partition the analysis based on whether the actual
elimination stage ¢; is greater than or less than £;. These
cases highlight the core technical contributions of our proof
beyond standard BAI analysis. We provide detailed bounds
for each case in Lemmas B.2, B.3, and B.4, respectively.

4. BrakeBooster: A meta algorithm approach

In this section, we propose a novel algorithm called Brake-
Booster. This is a meta algorithm in the sense that it takes
any fixed confidence best arm identification algorithm (de-
noted by A) equipped with the standard guarantees on the
correctness and stopping time as an input and converts it
into one that enjoys an exponential stopping tail.

We denote by A(dp) as algorithm .A run with a target failure
rate of §p. We assume that A(dg) is dp-correct (Defini-
tion 2.1) and has a sample complexity guarantee of 75 (A)
(Definition 2.3). Note that BrakeBooster will not require
Ty as input, but only the existence.

Given such an algorithm A, we are ready to describe Brake-
Booster whose full pseudocode can be found in Algorithm 2.

Algorithm 2 BrakeBooster

Input: base trial count L1, base budget T}, algorithm A,
base failure rate d
forr=1,2,... do
forc=1,2,...,rdo
Lr,c i=7-2""°Ly, T’r‘,c = 20—1T1
Jr.. = Budgetedldentification(A, L, ., T} ¢, d¢)
if J. . # 0 then
return J, .
end if
end for
end for

The key idea of BrakeBooster is to repeatedly invoke our
key subroutine BudgetedIdentification (Algorithm 3) with
increasing trial count L, . and budget 7T;. . until a stopping
criterion is met where (r,c) is an index of each invoca-
tion (called stage) with r € Ny and ¢ € [r]. We defer
the explanation on how we schedule L, . and T;. . to the
next paragraph. In stage (r,¢), we are given the number
L = L, . of trials, the sampling budget ' = T ., and
the base failure rate o, and run A(dy) repeatedly L times
with a sampling budget of T". Since A itself may not stop
before T time steps, we ensure the budget constraint by
forcing A to stop (forced-termination) when it does not
stop by itself (self-termination) after exhausting T' samples.
For each trial ¢ € [L], we collect the returned arm index
jg, which is set to 0 if A was forced-terminated. If at
least half of the trials were forced-terminated, then we have
failed — we return 0 from BudgetedIdentification. Other-
wise, we declare success and return the majority vote over
{J¢ : £ € [L],J¢ # 0} (i.e., majority votes over nonzero
votes). In the latter case, BrakeBooster stops and outputs
the majority vote as the final output J.(M). In the former
case, we continue to the next stage with trial count L, ./
and T,/ » where (r',¢’) = (r,c+1)if ¢ < r —1 and
(r',d)y=(r+11)ifc=r.

The key in our algorithm is the particular scheduling of L, .
and 7’ ., which is inspired by Li et al. (2018) and can be
viewed as a two-dimensional doubling trick. We visualize
the schedule in Figure 4. Each dot in the figure represents
the stage (r,c), and the label below each dot represents
the number of trials (L, .) and the budget assigned to each
trial (T} .). For a fixed row r, each stage spends the same
sampling budget of L, T . = 271, T,. However, the
assignment of L,. . halves with increasing ¢ and T, . doubles
with increasing c. For a fixed column c, as the row index
increases, the total budget for each stage L, .1} . doubles —
in fact slightly more than double due to a technical reason
that will become clear in the proof of Theorem 4.1. Both
the number of trials and budget increase row-wise, mean-
while different combinations of trial size and budget are
employed column-wise, keeping the effective total samples
used constant throughout the same row.
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Algorithm 3 BudgetedlIdentification

Input: algorithm A, the number of trials L, sampling
budget per trial 7', base failure rate dg
for{=1,2..., L do

Run algorithm A until it self-terminates or exhausts

the sampling budget 7.
if A has self-terminated then
Jo=J(A)
else
Jy=0
end if
end for
Count the votes: Vi € {0,1,...,K}v; =
S 1{Je =i},
ifvo > [£] + 1 then
return 0 // failure
else
return arg max;c g v;  // success
end if

Our 2D doubling trick extends the vanilla doubling trick
introduced in DSH. The vanilla doubling trick works by
iterating through an input parameter (e.g., budget in DSH)
at an exponentially growing rate to eventually reach the op-
timal value with only a logarithmic cost. Similarly, our 2D
doubling trick in Algorithm 2 requires two input parame-
ters, necessitating the design of a doubling scheme for both.
While the budget doubling mirrors DSH, the voting scheme
enhances confidence through the independence of repeated
trials. Additionally, our choice of L, ensures the minimal
number of repeated trials needed to achieve a confidence
certificate of 9, as presented in the following theorem.

Theoretical analysis. We first show that BrakeBooster is
d-correct.

Theorem 4.1 (Correctness). Let an algorithm A be -
correct and have a sample complexity of Ty, (A). Suppose
we run BrakeBooster (Algorithm 2) denoted by M with

2
input A, 5, L1 = [M], Ty > 1, and 5y < %

log 746150 2e)?"
Then,

P (7(M) < o0, J(M) #£1) <6.

The proof is provided in the Appendix. We briefly outline
the key ideas underlying the approach. The main novelty in
the proof of Theorem 4.1 lies in establishing a §-correct guar-
antee by repeatedly invoking a dp-correct algorithm within
a voting-based framework. A central component of this
argument is Lemma C.2, which demonstrates that the voting
mechanism induces an exponentially decaying failure prob-
ability, provided that d is not too large—for instance, when
do > % Another notable aspect of our analysis is the
design of the trial budget schedule L,. .. Instead of doubling
the sample size in each round as in standard schemes (e.g.,
using 2"), we apply a slightly more aggressive growth rule,

namely 72". This multiplicative factor of  in the exponent
is crucial, as it enables the use of a converging geometric
series in the analysis. However, this doubling trick only
adds a logarithmic term in the final sample complexity. In
summary, 1) the progression of trial counts L along with
the majority voting scheme ensures an exponentially decay-
ing stopping time distribution, and 2) the per-trial budget
schedule guarantees that the Jy-correctness condition of the
black-box subroutine is satisfied at some point, when the
budget exceeds the unknown 77 (A).

Importantly, our framework permits the use of any black-
box algorithm with a relatively large g, and allows one to
tune the initial budget parameter L; to obtain a significantly
stronger J-correct guarantee.

Furthermore, BrakeBooster enjoys an exponential stopping
tail.

Theorem 4.2 (Exponential stopping tail). Let an algorithm
A be dg-correct and have a sample complexity of Ty, (A).
Suppose we run BrakeBooster (Algorithm 2) with input A,

6, L = [%i%)], Ty > 1, and 6y < (i)2 Then, there
Tedg

exists Ty = O((T3, (A) + T1) - In(1/0)) such that

VT 2T, P(r(M) 2 T) < exp (‘T; (A) -TO(10gT>) '

That is, if T1 is an absolute constant, then BrakeBooster en-

joys a (©(T3 (A)In(1/6)), T, (A))-exponential stopping
tail.

The theorem above literally delivers the promised guarantee
— it takes in an algorithm with a high probability sample
complexity guarantee 75 (A) and turns it into the one that
enjoys an exponential stopping tail without losing the same
high probability sample complexity guarantee due to Propo-
sition 2.9(i), up to polylog(7T') factors. For example, one
can use Successive Elimination (Even-Dar et al., 2006) to
obtain the following guarantee.

Corollary 4.3. Suppose we take Successive Elimination
algorithm (Even-Dar et al., 2006) as A and run Brake-

2

Booster algorithm with §, L1 = f%], T >
Zedg

1, and 69 = (2%»)2 Then, BrakeBooster enjoys a

(é (HyIn(1/6)) ,@(Hl))-exponential stopping tail.

Figure 3 shows that applying BrakeBooster on Successive
Elimination helps to stop all the trials without sacrificing too
many samples (the CDF curve of BrakeBooster+SE catches
up with that of SE very fast because the crossover point is
at the stopping time of ~ 0.05 x 109).

5. Related Work

While research on best arm identification can be traced back
to the seminal work of Chernoff (1959), algorithms with
fixed confidence with the correctness and the sample com-
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Figure 3. Historgram of stopping times of BrakeBooster applied on
Successive Elimination (Even-Dar et al., 2006) vs bare Successive
Elimination: Out of 1000 independent trials on four arms with
mean rewards of {1.0,0.9,0.9,0.9} and Gaussian noise N'(0, 1).
We forcefully terminated the runs that do not stop until 1M time
steps. (6 = 0.01). CDF of stopping times are shaded with respec-
tive colors. (In this experiment, we employ a 1.2x growth factor
for both the per-trial budget and the number of trials, in contrast to
the conventional doubling scheme. )

plexity guarantees first appeared in Even-Dar et al. (2006)
where the authors proposed two influential algorithms: Me-
dian Elimination and Successive Elimination. The former
shows a deterministic sample complexity of O (l 852 log %

for finding an arm that is € close to the best arm with a prob-
ability of at least 1 — §. This worst-case result is optimal up
to a constant factor. The second algorithm, Successive Elim-
ination, shows that, with a probability of at least 1 — §, the
sample complexity of identifying the best arm scales with
an instance-dependent quantity H; = ZfiQ é, where A;
is the gap between the best arm and the i-th best arm. This
result has had a significant influence on subsequent research
on best arm identification. Since then, many algorithms
have been proposed to improve the sample complexity of
best arm identification in the fixed confidence setting. For
instance, Kalyanakrishnan et al. (2012) propose the LUCB
algorithm that extends Even-Dar et al. (2006) to the scenario
where the algorithm is required to return the best m arms in-
stead of just the best arm. Karnin et al. (2013) and Jamieson
et al. (2014) then propose algorithms with improved guar-
antees that turn problem-dependent logarithmic factors into
doubly-logarithmic ones. Chen et al. (2017) have further
improved both lower and upper bound guarantees on the
high probability sample complexity. Garivier & Kaufmann
(2016) propose the Track-and-Stop algorithm and Jourdan
et al. (2022) propose Top Two algorithms that asymptoti-
cally matches the asymptotic lower bound for its sample
complexity. Jourdan & Degenne (2023) propose a UCB-

CDF

based Top Two algorithm (TTUCB) which provides both
asymptotic and non-asymptotic upper bounds on expected
sample complexity. More recently, Jourdan et al. (2023)
extend the Top Two framework with EB-TC,,, where the
objective is to identify an arm within ¢ of the optimal arm.
This algorithm achieves both asymptotically optimal and
non-asymptotic guarantee in the o-FC-BAI setting. How-
ever, notably, all these results focus on the expected or
high-probability sample complexity, rather than the stop-
ping time distribution. Therefore, these algorithms do not
(yet) have a guarantee showing a light tail for the stopping
time distribution, which does not exclude the possibility of
running for a long time before stopping with a non-trivial
probability.

Moreover, the fixed budget algorithm, in contrast, must
return the best arm within a pre-specified budget. Audib-
ert et al. (2010) propose the first fixed budget algorithm
called Successive Rejects. They show that the probability of
misidentifying the best arm scales with a problem-dependent
quantity, Hy = max’¢, ﬁ Karnin et al. (2013) later im-
prove this result by a logafithmic factor with an improved
algorithm called Sequential Halving, which has been widely
adopted in many applications including hyperparameter op-
timization (Li et al., 2018). A recent work by Zhao et al.
(2023) builds upon Sequential Halving, addressing how to
measure if the algorithm’s output is good enough for any
suboptimality gap e, while ¢ is free to be chosen after the
algorithm finishes. Additionally, this work extends Sequen-
tial Halving to the challenging data-poor regime, where the
number of samples is even smaller than the number of arms.
While we leverage some fixed budget algorithms such as
Sequential Halving, the main focus of this paper is the fixed
confidence setting.

6. Conclusion

We have provided a new theoretical perspective on the be-
havior of the stopping time for the fixed confidence best arm
identification algorithms, which inspires numerous open
problems. First, both of our proposed algorithms intro-
duce nontrivial extra constant or logarithmic factors in their
sample complexity compared to the well-known optimal
instance-dependent sample complexity that is achieved by
existing algorithms (Garivier & Kaufmann, 2016). It would
be interesting to investigate whether it is possible to develop
novel algorithms that obtain instance-dependent optimality
while attaining exponentially decaying tail bounds for the
stopping time distribution. Second, BrakeBooster algorithm
incurs a polylog(T") term within the exponent. It would be
interesting to investigate whether this term can be eliminated
or, alternatively, to establish a lower bound that matches this
dependence. Third, the resetting mechanism employed by
our algorithms tends to be less practical. It would be inter-
esting to investigate whether there exists a simple and/or
elegant algorithm that can avoid the resetting mechanism
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Figure 4. A diagram showing the progression of the stages in Algorithm 2 where each stage (r, ¢) has a different trial count L, . =

r2"7°L; and a per-trial budget T’ . = 2¢~iy .

and exhibit practical numerical performance. In particular,
studying whether or not the recently proposed practical al-
gorithms in Jourdan et al. (2022) achieve exponential tail
bounds and, if not, developing remedies for them would
be an interesting avenue of research. Finally, it would be
interesting to attain similar exponential tail bounds for more
complex settings such as combinatorial bandits or Markov
decision processes.
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A. Lower bounds

Algorithm 4 Successive Elimination (Even-Dar et al., 2006)

Input: §
Initialize t = 1, S = [K], i; = 0 for Vi € [K]
Sample each arm ¢ € S once
while |S| > 1 do
Sample each arm ¢ € S once and update /i;

. . R 21n(3.3t2/5
Set S =S5\ <i:maxjes fij — fb; > (t/)}

t=t+1
end while

Theorem 2.4 (Lower bound). For Successive Elimination, there exists an instance with a unique best arm where the algorithm
never stops with a constant probability.

Proof. Consider an instance with K = 3 arms following Gaussian distributions A(1,1), N'(0.9,1), and (0.9, 1). The

lower bound we show here is a consequence of the potential misbehave of the algorithm after it pulls each arm for once.

Since all of the arms have same variance, we simply denote the any confidence width, with a probability J, of the sample
n .32

mean after being pulled for ¢ times as bs; = M

o By = {1 < po—3bsa}

o By i= {0 > 0,/ € (2 = big iz + b1) -

o By = {Vt >0, i3, € (13 — bsg, s + bé,t)}~

by Theorem A.2. We define the following events:

11
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We first note that the event E; N E» N E5 implies that the algorithm eliminates the best arm after it pulls each arm for once
and never stops. To see this, we have

fi11 < po —3bs1 = p2 —bs1 — 2051 < fia 1 — 2bs 1.
This implies that
f11 +bs1 < fian — bs1,

which is the condition for the algorithm to eliminate the best arm. Next we lower bound the probabilities of the events F1,
F, and Ej3. For the event E7, by Theorem A.1,

P(Ey) =P (i, < po — 3bs1)
=P (u1 — f1,1 > Ay + 3bs1)

o 1 o 7(A2 —|—3b5,1)2
xp | ———= "7/
gy P 2
1 7 (4bs1)°
> ﬁe){p 7# (b5’1z1.94>A2 f0r5§1/2)

N 1 5\ 118
8y/m \ 3.3 '
By Theorem A.2, we have for 6 < 1/2,
P(Ey N Es) = B(Ex) P (Ey) > (1-06)° >

Thus, we have

118
]P)(ElﬂEgﬂEg) :P(El)P(EQ)P(Eg) > 1 (6> .

Thus with a constant probability, the algorithm never stops. O

Lemma A.1 (Anti-concentration inequality (Abramowitz & Stegun, 1968)). For a Gaussian random variable X ~ N (p1, 0?)
and any z > 0, we have

1 722
P(|X — p| > 20) > mexp <—;> .

Lemma A.2 (Naive anytime confidence bound). For a Gaussian random variable X ~ N(u,c?), the sample mean fi;

satisfies
) 202 1n (3.3t2/0) 202 1n (3.3t2/4)
PIVt>0, i€ | p— DT | A e— >1-4

Algorithm 5 KL-LUCB (Tanczos et al., 2017), adapted and simplified for sub-Gaussian distribution
Input: §
Define: L; (Ti (1), (5) = fi; — bé,Ti(t) and U; (Ti (1), (5) = f; + bé,Ti(t)
Initialize: Sample each arm once
while L;- (E* (t), (S) < MaX;£= U; (Ti(t), (S) do
Sample the following two arms:
e F=arg mMax, () i
o i’ =arg max, . Ui(Ti(1),9)
Update sample mean and confidence interval
t<—t+4+2
end while

12
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Theorem 2.5. For KL-LUCB (Algorithm 5), there exists an instance with a unique best arm where the algorithm never stops
with a constant probability.

Proof. The proof follows the same line as the proof of Theorem 2.4. We consider an instance with K = 3 arms following
Gaussian distributions A(1,1), (0.9, 1), and N'(0.9, 1). We define the following events:

o By = {11 < po —3bsa}.
e By = {Vt > 0,02 € (,uz — bst, po + b57t)}.

o Byi= {¥t > 0,fiss € (5 = bsas i3 + bse) }-

We first note that the event £y N E5 N E3 implies that the algorithm will never pull the best arm after it pulls each arm for
once and never stops. To see this, we first show that the best arm has lowest sample mean among the three arms given
F1 N Ey N E5. We take the second arm as an example, but same argument for the third arm,

fn < p2 —3bs1 = p2 — bs1 — 2bs1 < fiz1 — 2bs 1 < fiz 1.
Thereby the algorithm will take arg max;_, 5 fi; as the best arm and pull both of arm 2 and 3 in the next round. Given the
event I/ N Es3, the confidence interval for arm 2 and 3 keep shrinking, while the confidence interval for arm 1 keeps still.
Thus arm 1 will never be pulled again. Also given Eo N E3, the confidence interval for arm 2 and 3 will always overlap,
thus the algorithm will never stop.

The lower bound of the probabilities of the events £y N Es N E3 is same as the proof of Theorem 2.4. O

13
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B. Doubling Sequential Halving with fixed confidence (FC-DSH)

Throughout this section, acute readers will notice that we may talk about events that happen in phase m without having a
condition that the algorithm has not stopped before. To deal with this without notational overload, we take the model where
the algorithm has already been run for all phases without stopping, and the user of the algorithm only reveals what happened
already and stop when the stopping condition is met. This way, we can talk about events in any phase without adding
conditions on whether the algorithm has stopped or not (and this is valid because the samples are independent between
phases).

B.1. Proof of FC-DSH’s Correctness

Theorem 3.1 (Correctness). FC-DSH runs with confidence level d is d-correct.

Proof. Following the definition of §-correction in 2.1, we need to prove that
P(r<oo,J#1) <4

For each phase m € {1,2,...} in FC-DSH, for each stage ¢ € Ulogz(K )”, for each arm ¢ € [K], recall the confidence
width

2 6K [logy(K)] m?
B Lo [ 8% Noga(F) [ m
¢ N(m.ts) )

and define the following events:

G = {\ﬁ c[K],Vme{1,2,..}, ¥ e [[logQ(K)” |l | < bgmv@},
and
G = {Eli €[K],Ime{1,2,...},3 e UlogQ(K)” 1l = | > bgm@} .

We first claim that the probability of event G¢ happens is at most 6. The proof is as follows
P(G°)

(use union bound)

2 log <6K [logzé(Kﬂ m2>

(m.0) 2 6K [logy (K)|m?
082 ()] ¢ N; \/ w108 < 5 >
Z 2exp | — 7 (use Hoeffding’s inequality)

14
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7.‘.2

6
<é.

. 2
(use geometric sum Y- -y = 7o)

Wl >

Secondly, we claim that under the event G, FC-DSH never outputs a suboptimal arm, formally, P (J # 1, G) = 0.
We prove this claim by contradiction.

Suppose FC-DSH outputs arm .J # 1. From the stopping condition LF,m) > max; U i(;n},

Lsm) > max Ui(;?])
=Ly > o™
A B 3

~(m

)~ ™ and a{™ + ™ > 11y, which implies

Under event G, we have 15 > /)Sm
pr = a5 =05 > A 6™ > .

Therefore, we have p; > w1 which is a contradiction.

Finally, we combine both claims to show
P(r <oo, J#1)
=P(r<oo, J#1, G)+P(r <0, J#1, Q)
<P(G)+P(J#1,G)
<d+0=4.

B.2. Proof of FC-DSH’s Exponential Stopping Tail

Theorem 3.2 (Exponential stopping tail). Let Ts = 4096 Hs log, (K) log (%&(K)) and x = 4096 Hs log, (K). Then,
for all T' > 2715, FC-DSH satisfies

rm) <o (L)

Proof. To avoid redundancy and for the sake of readability, from now on, we assume K is of a power of 2. Hence
[logy (K)] = logy(K). It is easy to verify the result for any K.

Denote by m, = min {m >1: L(JTL) > 1;1&){ Ui(m)} the stopping phase of FC-DSH. Then, 7 corresponds to the total

m

number of samples at the end of stopping phase m..

It suffices to show for all phase m such that T,,, > T5, P (7 > T,,) < exp (— T,;" ) Then, we can apply Lemma B.1 to
obtain for all T > 275, P (7 > T) < exp (_%)

Recall the stopping condition: at the end of phase m, FC-DSH outputs an arm .J,,,, and FC-DSH will stop if the condition

LY > max U™ is satisfied.
m i;éc]m

Let m be any phase such that T},, > T5. We start off by decomposing probability bound according to the stopping condition
P(r>Tn)
m
< H P (phase m’ failed to stop)

< PP (phase m failed to stop)

15



Fixing the Loose Brake: Exponential-Tailed Stopping Time in Best Arm Identification

=P (Lf,:) < max Ui(m))

1FJm

=P <L§’jnf) < max U™, Ty # 1) +P <L(J’Z) < max U™, Ty = 1>

<P (Lf,? < max U™, g, # 1) +Y P (LS’Z) <U™. J, = 1) .
" i#£1

For the first term, we obtain the following probability bound

P (Lf;jj < max U™, J,, # 1)

1# T,
<P (£ 1)

Tm
< __m ). L B.S
eXp( 512H210g2(K)> (use Lemma B.5)

In phase m, for each i € [K], we denote by ¢; the stage at which arm i is eliminated. We define £ to be the largest stage ¢;
such that A; < %A%T@H. We observe that there are arms ¢ that have no such £ and there are arms ¢ that £} exists. For
the former case, if an arm ¢ has no such £, it implies A; > A%. We further split the second term accordingly

P (L(Jjj) < U™, Jp = 1)

i£1
S oP(LS <™ g =1)+ 3 P(25 <u™, g =1)
i#1L: i#1L:

A; >A% £7 exists

< > p()<ut i =1)

i1
A >A£
4

IN

+ ; (IP’ (Lf;j? <U™, J, =1, eiz@)w(%) <Ufm),Jm=1,€i<£;f)>.

£7 exists

For the first subterm, for all arm ¢ that satisfies ¢ # 1, A; > %A%, we apply Lemma B.2 to obtain the following probability
bound

T,
P (L(m) U(m) T = 1) < o m )
LosYis = P\ 75120, logy (K)

For the second and third subterms, for all arm 7 that satisfies ¢ # 1 and ¢ exists, we apply Lemma B.3 to obtain the following
probability bound

T,
P (L™ <U™ 0, >0, 0, =1) < ~ 1024, lop (K
( 1 <UL b =26, )_eXp 1024Hslogy(K) )’

and we apply Lemma B.4 to obtain the following probability bound

T
o 1< -— .
Pl <y Jm =1) < exp ( 2048 H, 1og2(K)>

Hence, for the second term, we obtain the following probability bound

3 <IP’ (L‘f”) <U™ t; >0, Ty = 1) TP <O, T = 1))

i£1
< Y P (L(J’:) <U™. J, = 1)
i#1:
A >A K
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+ Y (IP (L5 < U™, =1, 62 0) + P (L5 < U™, T =1, 4 < g;))

i#£1:
£7 exists
Tm
< . m
= ; P < 512H, 10g2(K)>
A >A.£
4
T T
* ; (eXp< 1024, 1og2(K)> +eXp< 2048 H, 1og2(K)>>
é;‘exi;ts
T
<2 R N—
= ;e’{p < 2048, 1og2(K)>
T’m.
<9(K -1 S —
S 2K —1)exp < 2048 H, 1og2(K)>

Finally, we combine two terms and obtain the probability bound

P (LS’Z) < max U™ g, # 1) +y P (Lg’jj] <U™, J, = 1)
17 Im i#1

T T
- S L S . N—
exP( 512H, log2(K)> +2 )eXp< 2048, 1og2(K)>

T
<2K —_—
=S exp ( 2048, 1og2(K))

T,
- o Im 102K ).
eXp( 2048, log, (K) T 108 )>

The condition T,,, > Ty = 4096 H logy(K) log (#2200 ) implies that

6K lo§;2(K) >

=T, > 4096 H; log,(K) log (2K) (use § < 1)
T
log(2K) < —— "
= 108 (2K) = 4556, Togy (1)
o I
2048 H; log, (K)

TTYL Z 4096H2 10g2 (K) IOg <

T

log (2K) < ——————.
+log (2K) < 4096 H; log, (K)

Therefore,

T’fﬂ
L Im L og(2K
P < 3018, logy (i) + 108! ))

T
< . m
=P ( 4096 H; log, (K) ) ’
which concludes the proof of our theorem.

O

Lemma B.1. Suppose for all phase m such that T,,, > Ts = 4096 H5 log, (K) log (%&(K)),for a constant ¢, FC-DSH

achieves

T
P(r>T,) < S L
(=) <o (= e )
then, for all T' > 2Ty, FC-DSH achieves
T
P(r>T)< -
(27 <o (g

17
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Proof. LetT > 2Tjs. Then, there exists m such that
T <T <Tpst1-
By the FC-DSH setup, 27}, = Typ4+1, thus T' < T}, 11 = 215,

Then,

IA
=
-
IV
B

(use T' > Toy)

IN
o
»

T

T
O
Lemma B.2. Let u be any arm that satisfies v # 1, A, >
4096 Hs log, (K ) log (%&(K)) we obtain

m Tm

%A%. For all phase m such that T,, > Ty =

. . N 6K log, (K)m? .
Proof. In the following proof, we abbreviate log(-) = log ( ~=—=3%—-— ) for clarity.

‘We have

(m 2 (m 2 . m m
=P <Mg ) N6 log(-) < ™ + N log(+), Jm = 1) (by the definition of Lg ) and U; )
_(m)  A(m 2 2
=P <N(1 ) < \/N(m,zu)bg(') + \/Wlog(‘)v Im = 1)
m) - 2 .
<P (ug D < 9 Vo 108(); Jm = 1> (since J,, = 1, N(mb) > N0m.a))

- (m o 3
_P<,UJ§ )7,u17,uq(t)+,uu<*Au+2 Zv(mmlog()7jm_1>
Lemma B.6 states that for all arm « such that u # 1, A, > %A%, for all phase m such that T,,, > Tj, NOmla) >
g—% log (Gmog%ﬂ), This inequality implies that

m, Ly 2

u

=A% >

= N(m,tyu) K}

2 6K log, (K)m?
=A, > 4\/N(m,lu) log ( 5

2 6K logy (K)m? Ay
= _AU+2\/N(m,€u) log( 5 g—T.

18
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Hence,

Therefore,

IN

IN

IN

IN

IN

IN

P ﬂ(1M) —_— 7/:L7(lm) + py < AquQ\/

P (i

N(m,l“,)

m ~(m Ay
g )7/1‘17[1’1(1, )+/'Lu<777 ‘]ml)

L
ZP<N( )*/Ufl*ﬂq(lm)+ﬂu<* ,EuZ,Jm1>
z=1
L A2
1
Zexp —
=1 2 (ﬁ + ﬁ)
ZL: ( AﬁN(m’1)>
exp | —
o 16
ZL:G A2 Trn
xp | —— -
— 16  Klog,(K)
L A2
> exp | - £ __Im
o 64 Klogy(K)

log, (K) exp (

exp (

T
256H3 log, (K)

Tm

m

)

256 H, log,(K) >

ST i+ losom(1))).

The condition T,,, > Ts5 = 4096 Hz log, (K ) log (%&(K)) implies that

Ty > 4096 H log, (K) log (

6K logy(K)

)

=T, > 512H51og,(K) log (logQ(K))

= log (logQ(K))

Tm

S Im L og (log, (K)) <
= T 256 H, logy(K) og (logy(K)) <

exp (
< exp (

Tm

T,

256 H; log, (K)

Tm

 512H,log, (K)

19

< .m0
= 512H, log,(K)

Tm

. log<1og2<f<>>)

).

2
2 log <6Klogf5(K)m >7 I =1

(use Hoeffding’s inequality)
(useL>1landz>1)

m T,

(use A, > %A%)

(by the definition Hy = max; iA;?)

(use 6 < 1)

 512H,log,(K)'
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O

Lemma B.3. Let u # 1 be any non-optimal arm. For all phase m such that T,,, > Ts = 4096 H3 log, (K ) log (%‘M),

assuming U, exists, we obtain

T,
P (L™ <UM™ 0, >0 T, =1) < —m ).
( < Im ) =P\ T1024H, log, (K)

Proof. Recall that £, is defined to be the largest stage ¢ such that A,, < %A%Q,Hl. In the following proof, we abbreviate
log(-) = log (M) for brevity.

We have
P (Lgm> < U™, g, >0, 1)
=P <ﬂ§m) - N(m,el) log(+) < ™ + 5 log(), £u > £, 1)
(by the definition of Lgm) and U fm) )
~ (m) 2 < (m) 2 « .
<P - ) log(+) < ™ + N log(+), bu, > £, Jm =1 (use £, > £F)
=P <ﬂgm) _ ﬂ&m) < \/N(m ) log(+) \/N(mf ) log(), €, > £, Jm )
2 "
<P <ﬂ§’”) alm < 2 Ny 1080): b > 6, T ) (since J,, = 1, N(m:4) > N(m.£))

~(m ~(m 2 *

N

Lemma B.7 states that for any arm u such that u # 1 and £}, exists, for all phase m such that 7,,, > T5, N (m.ly) >
2
2 log (w). This inequality implies that

. 32 6K log (K)m2
m, Ly, 2
Nt > 3 log (5

u

32 6K log, (K)m?
2 2
= A7 N( ) log ( 5

2 6K log, (K)m?
= A, > 4\/N(m7fi) log ( 5

2 6K log, (K)m? A,
= _A“+2\/N(7Mii) 1og< 5 §—7.

Hence,
2 6K log,(K)m?
_ ( ) _ 2 % _
( H — + py < —Ay + 2\/N(m’£5) log < 5 Ay >0 I =1
A,

P( oy - <>+uu<,£uzez,Jm1>

L A
=>p ( U~y = ™ < — S =2 I = 1) (L = logy(K))
z=L}

20



Fixing the Loose Brake: Exponential-Tailed Stopping Time in Best Arm Identification

IA IA
M= L=
@ ]
5 Z
/\

—p*
z=L}

Sl

Az
4 (use Hoeffding’s inequality)
2 ( (m,L) + N(m, z))
AQ N(m £r)
— 15 (use L > ¢ and z > 0})
T, .
u m fFNML) — —  Tm
6 2Z2,+1Klog2(K)> (by de TR Togy ()

There are two cases: (1) %241 > 1and (2) %2—52 < 1.

In the first case: by the definition of £, we have %ALT% < A,. Thus, we have
4

In the second case 52~ e

In both cases, we have

Ai Tm
X _——
PN T 2t K log, (K)

2
<e Agz—q T
X _— .
P 64 2 GtiK logy(K)
2
o Agz—% T
= ex — .
P\ 72 51210g,(K)

1 T - A=
T 51210g2(K)> (by the definition Hy = max; iA;?)

(
o (o).

512H; log,(K)

< 1, we have

T
exp To—GHlK log, (K) )

T
128 K9-tilog,(K)

| /\

= exp (
T,
<e wo, o Tm Kz—fu 1
= p( 128 " logy (K )) (use <D
A2 T,
<e —u mo >1
= p( u  128log, (K )) (wsew 2 1)
1 uT,
<e — . — by the definition Hy = JiAT?
< p( i 12810g2(K)> (by the definition Hy = max; 1A; )
:eXp< 128, 1og2 ))

~ 512H, 1og2 )) '

A2 T
exp 16 24+ Klog,(K)

21
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T
< ——m )
= &P < 512H, 1og2(K)>

Therefore,

T
Zexp< 16 20K logy (K )>

z=0r

L T,
D, exp  512H, log, (K)

—p*
z=L}

T
log, (K) exp <_5l2Hzlog2()>

< o (~ iy e+ ooea(R) )

The condition T}, > Tj = 4096 H> log, (K) log (6K logz(m) implies that

IN

IN

6K1
T, > 4096 H3 log, (K) log ( og2 )

=T, > 1024H5 log,(K) log logQ(K)) (use § < 1)
T,
log (logy(K)) < —
= log (loga(K)) < 455 0 i
T, T,
L —— 1 K< —-——o ™
512, logy (K) | °° (log>(K)) < 15517, log, (K)
Therefore,
e Tm + log(log, (K))
O (.t L S
P\ T B12H, log, (K) T 08V 82
< T
xp|l ————7—— .
= P\ T1024H, logy (K)
O
Lemma B4. Let u # 1 be any arm non-optimal. For all phase m such that T,, > T; =

4096 H; log, (K) log (%&(K)), assuming U}, exists, we obtain

T,
Py <) <exp(-oom ).
(b < “)—6Xp< 2048H210g2(K)>

Proof. Recall that £, to be the largest stage ¢ such that A, < %A%Q_“l. We denote by Ay the set of arms at stage £. In
the event arm v does not survive until stage £;;. We have

P4, <£)
=P(3elt,—1]:u¢ App1,uec A
01
< Z P (u ¢ A1, u € Ag) (use union bound)
-1
< Z Z P (u ¢ Apr1, u € Ay, Ap = ag) (use the law of total probability)
=1 a,C[K]
ucay

22
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£ —1
Z Z P(U¢Ag+1,u€¢4@|Ag=az)P(Az=az).

=1 aC[K
uea;
lag|=F-27 ¢

By the setup of the FC-DSH, at stage ¢, the event arm wu is in set A but is eliminated next around means that there exists a
set A C Ay that half the size of Ay such that Vi € A, fi,, < [i;. Formally,

-1
Z Z P(u¢ Apyr, u€ Ar | Ap=a) P (A = ap)
= azC[K]
ucag,
lag|=F2~**!

Z Z IP’(EIACAg, s.t]A] = |A€‘ ,Vie A, i, < i Ag—ag>]P’(.Ag=ag)

=1 agg[K]i

uecag,
lae|=K27“+!
-1
:Z Z IP’(HACag,s.t.|A| l d ,Vie A, /Lu</LZ|Az_ag)]P(A[=CL4).
(=1 a;C[K]:

ucag,
lag|=K2~“F!

Let A C ay be a set as described in IP(-) above. We denote by Bot;(A) a set of arms with |A| — j lowest means in A.
Formally, Bot;(A) satisfies that Bot;(A) C A)| =|A| — j,and Vz € Bot;(A), Yy € A\Bot;(A), piz < puy.

We denote p;(A) to be mean of the arm ¢ indexed within the set A. Also to make it clear, we denote p; ([K]) to be mean of
the arm 4 indexed within the whole set [K], i.e., u; ([K]) = u;

We set j = |A| = ‘T’ we obtain the following properties
¢ [Boyy ()] = 41 =
* Vi € Botj(A), pi < pai(A) < pal ([K]) = pay ([K]) < u‘a“ The first inequality is from the setup of Bot;(A).
The second inequality uses the fact that ifACIK ] hence Vi, uZ(A) < wi ([K])

Within stage ¢ < ¢ — 1 and set a; € [K] such that u € a, and|a,| = K2~“*!, we focus on the probability

(EIACag,st|A| |Z| ,Vie A, uu<,u1|Ag—ag>

<P (EIA C ayg, st ]A] = lac] Z' , Vi € Bot;(A), fi, < f1; | Ae = ag> (use Bot;(A) C A4)

Within the condition 3A C ay,s.t.|4| = TE, Vi € Bot;(A), we have
flu < fli

Sl — fu — i i <~ + G
= fly — P = fli + i <~ T+ Hfay| (use the property f1; < fija,|)
4 4
S flu — o — fli + i <Ay — Ay
4
1 ..
:>,[14u — My — ,[J/z + i S §A{f2 41— A|a | (by the definition Au S %A%2_zft+1)
4
1
=y = flu = fli + i < iAggfﬁrl AN (since £ < £7)
4
. . 1 B
Sl = fhu — i+ < iAW‘ A, (use|ag| = K271
4 4
N N 1
& Py = M — i < _§AM
4

23
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Thus, we have

P <E|A C ay, S.t. |A| ‘ Z| , Vi € Bot; (A), ﬂu < [Ll | Ay = az)

1
<P <E|A C ay, S.t. |A| ‘ Z| , Vi € Bot; (A) [y — Py — i + 15 < _iAM | Ay = ag)

1
<P <EIA C ag, s.t.|A| = lac| Z' , Vi € Bot;(A), <ﬂu — iy < Aaz|> \ (ﬂi — i = 4A|a,f) | Ap = ae)
. 1
<P Mu_ﬂug_ZAhTA | A= ar
1
+P <E|A C ayg, st.]A| = |a4| , Vi € Bot;(A), fi; — pi > Z | || Ae= ag> (use union bound)
. 1
<P iy — pu < *ZAWTZ\ | Ae = ay
1
+ Z P <VZ S BOtj(A), [y > i + *A|a€‘ | Ay = ag)
4 =
ACay:
|A| ‘“é‘
2
Ao Al N0 Blagl
<exp| — 5 1 64 + Z exp —‘Botj(A)’ 5 16‘ (use Hoeffding’s inequality)
ACay:
ja=legd
N(m L) \“zl N le]
= exp 5 16 + Z exp —|%| 5 1(? (use property|Botj (A)| = ‘%l)
ACay:
ja=tedl

2
N(m 0) A\aﬂ N la |a N (M) AlaT[‘
= ex xp | ——
SEP 5 16 lael J PN T T T

A? A?
N(m ) \ael lag| |a N (m,8) agl
< exp 5 16 + (2¢) 2 exp ~1 3 16‘ (use Lemma B.9)
2
N8 Dlag] MANW“AW'|WH ,
= exp [ —— 16 + exp 13 716 og(2e)

We apply Lemma B.8 that shows for all phase mn such that T,, > T, N(™#) > 236 log (2e). This inequality also means

. Lozl
that
2
56 ——log (2e) < N(™H)
legl
4
o (2 NWDAM
< 8log (2e) < 5 16
o |ag|log (2€) < W”Nm“éﬂl
¢1108 8 2 16
AQ
_ ladd |ag| NOmO el
5 log(2e) < —
8 2 16
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A? A?
|a |N(m€) \az\ |a |a€|N(mé) \ael

+

log(2e) < —

4 2 16 2 8 2 16 '
Thus,
2 2
exp | — | pexp | el log(2e)
2 16 4 2 16
A? A?
N(m o) \ael |ag| N () T ladl
< exp fexp | SH_— %
- 2 16 8 2 16
2
N Al 1 N0 Blagt
< exp +exp | —= 4 (use|ae| > 1)
- 2 16 8 2 16 T
Af, N0
a[
<2 —
= 2o 256
AK oy N6
— 2exp 2 2*516 (use|ag| = K274+1)
By the definition N ("0 = W, we further have
ex A%?”l : Im
P 956 211K logy(K)
A2
=2exp EE T
Ko-t+1 10241ogy(K)
<2 = T (by the definition H: IA7?)
exp|—— —"—— e definition Hy = max; iA;
=P\ T, T 102410, (K) Y 2 11
T
=2exp| ——7F—"7— .
1024 Hs log, (K)
To summarize, we have obtained the following probability bound
|ac| el T,
P(3ACaypst|A , Vi€ A, fi, < = <2 -]
( a, st |4] = PEA fiu < i | Ac=ac P\ T1024H; log, (K)

Therefore, from the beginning derivatlon, we obtain the following probability bound
P, <€)

o1
Z Z P(ué¢ Appr, u€ Ag | A = ag) P (A = ay)

= (l,ec K]
ucag,
lag|=K-27*+"

£ —1
T, B
Z Z 28Xp (_]_024H210g2(_[()) P(.Ag = a@)

(=1 aC[K]:
ueay,
lag|=K-27¢+1

-1

- 2 __Im
; eXp( 1024H2log2(K)>
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Tm
< . m O * L K
<2log,(K) exp ( 10241, log, (K)) (use £, < log,(K))

Tm
= exp (1024[{210&(}() + log(QIOgQ(K))> .

The condition T,,, > T = 4096 Hz log, (K) log (%&(K)) implies that

6K 1 K

T > 4096 H logy (K) log <O§2(>>

=Ty, > 2048H, log, (K ) log (21log,(K)) (use § < 1)
T,

log (2logy(K)) € ——

= log (2loga(K)) < Srem e (7)
T, T

- 4+log (21 K)<——""™

=~ o, logy (1) T 108 (21082(K)) < —5p e e
Therefore,
T + log(2log,(K))
o - m
P\ T1024H, log, (K) | OB082

T
< - m
= &P ( 2048 H, 1og2(K)> ’
which concludes the proof of the Lemma.

O

Lemma B.5. For all phase m such that Ty, > Ts = 4096 Hs log, (K) log (M) the probability that FC-DSH fails

to output arm 1 at the end of phase m satisfies

Tm
P (Jm #1) < exp <512ng2<z<)> '

Proof. While one can directly use the proof of Karnin et al. (2013), we present here an alternative proof that has an
pedagogical value — this proof shows a more fine-grained control of events that reveals that the bottleneck of the guarantee is
the bad behavior of the best arm rather than the bad behavior of the bad arms.

We denote by Ay the set of surviving arms at stage £. We denote by ¢; the stage at which arm 1 is eliminated. The event that
Jm # 1 implies that arm 1 does not survive until the last stage L, i.e., {1 < L. We have

P(@l < L)
=P(H<L-1:1¢ Apr,1€ A)
L-1
< Z P (1 ¢ Appq, 1 € Ag) (use union bound)
(=1
L-1
< Z P (1 ¢ App1, 1 € A, Ap = ag) (use the law of total probability)
=1 a,C[K]:
1€ay,

lag|=K 27+

=Y > PA¢AleA | Ar=a)P (A =ap).

By the setup of the FC-DSH, at stage ¢, the event where arm 1 is in set .4, but is eliminated next around means that there
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exists a set A C .Ag that half the size of Ay such that Vi € A, fi; < j1;. Formally,

Z S P(u¢ Apa, 1€ A | A =ar) P (A = ay)
=1 a,C[K]:
l€ay,
lag|=K2~“F!
L-1 L4|
= Z P(HAC.A@, S.t.‘A|=7€,Vi€A, /:Llﬁﬂi.Ag:a[>P(.Ag=ag)
1 agg[K]i
l€ay,
lag|=K2~ ¢t

=

L-1
:Z Z IE”(EIACag,s.t.|A| |€| ,Vie A, M1<M1|Az_a5>P(A[=a4).
{=1  a,C[K]:
l€ay,
lag|=K2~“F!

Let A C ay be a set as described inside P(-) above. We denote by Bot;(A) be a set of arms with|A| — j lowest means in A.
Formally, Bot;(A) satisfies that Bot;(A) C A)| =|A| — j, and Vz € Bot;(A), Yy € A\Bot;(A), piz < puy.

We denote 1;(A) to be mean of the arm 4 indexed within the set A. Also to make it clear, we denote p;([K]) to be mean of
the arm 4 indexed within the whole set [K], i.e., u; ([K]) = ;.

We set j = 'ﬂ = lazl we obtain the following properties

4
+[Bot ()] =4 = L
* Vi € Botj(A4), ui < pual (A4) < pal ([K]) = /,L‘a” ([K1) < Hya,|- The first inequality is from the definition of

Bot;(A). The second 1nequahty uses the fact that if A C [K], hence Vi, 1i(A) < pi([K])

Within stage ¢ < L — 1 and set ay C [K], 1 € ay, |ag| = K271, we focus on the probability

1
JA C ay, st |A| = o e| , Vi € Bot;(A), <ﬂ1 —p1 < —2Aa,,|> \Y

IP’(EIACag, s.t.|A| = l | JVie A iy < |Az—a4)
<3A C ayp, s.t.|A| = lae] | , Vi€ Bot;(A), fu < | A= CLg)
=P (EIA C ag, s.t.|A| = ] | , Vi€ Botj(A), fir —p1 — fii + i < —pa 4 | A = ae)
SIP’(HACag,st|A| |ae| , Vi € Bot; (A),ﬂl—ul—ﬂi—l-uiﬁ—m—i—,um|Az=ae>
' (use the property f1; < fija,|)
1
]P’(EIACag,st|A| | ‘| , Vi € Bot; (A),ﬂl—u1—/fbi+ui<—A|af|.Az:a¢)
[

1
+P <3A C ag, st |A| = \a?A’ Vi € Bot;(A), fui — p; > §A% | Ay = ag> (use union bound)
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2
N0 \an Nm0) Blagl
< exp 5 4 + A; exp | —|Bot;(A) 5 44
ag:
\A|:‘al/|
(m,0) \ | (m,£) |2 \
N m a" ‘ag| N eel
e > 1 |t A; P\~ T
ag:
jar=tegl
2
N0 \an al lag| N Dadl
P 5 1 | T (la;l> e I R
(m,0) \ | (m,£) |2 \
N m ae lag] N(m, lag]
< oxp 51 | T e %AT 1
NGO \au N(m0) \an
= exp 3 4 + exp |a4£| 3 4 ‘ad log(2e)

(use Hoeffding’s inequality)

(use property |Bot; (A)| = ‘aTel)

(use Lemma B.9)

We apply Lemma B.8 that shows for all phase m such that T}, > Ts, N6 > 256 log (2¢). This inequality also means

|a1\

that
256
—— log (2e) < N0
lael
4
1 Nt Blag]
& 32 2e) <
og(2e) < ———
N(m,0) W|
< 4|ap|log (2e) < |a;| 5 4
|al W‘N(mé) |az|
2 100 (2 A
= 5 log(20) < 52 4
|a/€| N(m £) \ag\ |a£| |aé| N(m £)
—— 4+ —log(2e) < —
1 2 1 "o leslsH—
Thus,
A 2
N(mf) \“e| N (m:8) Tlag|
exp 5 4 + exp —‘GTAT 44 |e‘log(26)
2
N(mf) \wl ‘a|N(mvf)Alsz\
< exp + exp a2 A
- 2 4 8 2 4
2
- N(mf) \ael N 1 N(m.0) InTz\
ex exp | —=
= &P > a1 P78 2 1
Af, N0
"l
<2 _
<2exp ol

28
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A2 N (m,0)
%2—24»1

:2 —
P 64

By the definition N (™% = we further have

TVYL
2= 1K log,(K)’

(use|ag| = K271

A2%24+1 T
P 64 2-CHK logy(K)
2 Alyrin T
=2exp | — .
%2*”1 256 log, (K)
1 T,
<2exp (_Hz . 25610;2(@) (by the definition Hy = max; iAi_Q)

T
=2 ——m ).
P ( 956 H 1og2(K))
To summarize, we have obtained the following probability bound

]P’(HACag, s.t.|A| = | El ,Vie A, u1<u2Ag—a5> <2exp<—

Therefore, from the beginning derivatlon, we obtain the following probability bound
P (6 <L)

:Z Yo PlugAr, uc A | A =ar) P(Ar = ay)

= a;C[K]:
l€ay,
lag|=K 2741

T
Z Z 2 exp (—w) P (A = ay)

=1 arC[K]:
1c€ay,
lag|=K-27 1

Y e (o T
~ 2 TP T 256, log, (K)

T
< 2logy(K) exp <_256H210g2(K)>

T
= exp (W + log(2 logQ(K))> .

The condition T,,, > T5 = 4096 H> log,(K) log (M) implies that

K log, (K

Ty, > 4096 H, log,(K) lo <60§2())
=T, > 2048H, log, (K) log (2log,(K))
=Ty, > 512H,log,y(K)log (2logy(K))
T7YL
log (2logy(K)) < ———™
= log (2logy(K)) < o0 i)
R
256 Hs log, (K)

T
+log (2logy(K)) < —

Therefore,

T
exp <_256H210g2(K) + log(21log, (K)))

29

256H3 log, (K

512H5logy(K)

= 10%2(K))

(use 6 < 1)
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T
< - m
= P ( 512H, log2(K)> ’
which concludes the proof of the Lemma.

O
Lemma B.6. Let u # 1 be any non-optimal that satisfies A, > %A 5. For all phase m such that T,, > Ts =

4096 Hs log, (K) log (6K IOEQ(K) ) the number of samples used at stage {,, when arm u is eliminated, satisfies

m, by, 2
N( ) > 72 log (

u

6K log, (K)

Proof. We start from the condition T}, > 4096 H> log, (K) log ( S ) and obtain the inequality as follows

6K logy (K )m?
Ty > 4096 H; log, (K) log <°g2()m>

0
£ 6K logy(K)m?
=T, > 1024? log,(K) log — 5 (by the definition Hy = max;>2 Z'AZQ)
K
T
Kot 2
T v K1 K
=Ty, > 10241 —— log,(K) log OR log, (K)m™ (use 1 > 2tu)
A% 5
4
Tm 128 6K log,(K)m?
> —1 it = P A
T K2t logy(K) © A% ° ( 5
4
12 K1 K)m?
& N > 7A28 log <60g26()m> (by the definition of N(m’e))
K
4

2
L yime 5 128 log <6Klog2(K)m )

(use A, > %A%)
o Nt > Elo <6K10g2([()m2> .

O
Lemma B.7. Let u # 1 be any non-optimal arm. For all phase m such that T,,, > Ts = 4096 Hy log, (K ) log (%g"‘([()),
assuming 0, exists, the number of samples used at stage (, satisfies
. 32 6K log,(K)m?
m, Ly, sl il =25 S A
N ) > A2 log ( 5

Proof. Recall that £ is defined to be the largest stage ¢ such that A,, < %A K9t For any arm u € [2, K], since it
survives until stage £, by the definition, it satisfies %ALTQ <A; < %AK_Q—ZZJA.
4 4

We start from the condition T;,, > 4096 H; log, (K) log (%&(K)) and obtain the inequality as follows

K log,(K)m?
T, > 4096 Hy log, (K) log (f)"’gz()m>

B
Ko—1* 2
Ko-tu 6K log, (K

=T, > 1024&*27 log, (K) log <°gz(>m> (by the definition Hy = max;>5iA;?)
fort
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N T, _ 18 (6K logy (K)m?
K2~ litllogy(K) ~ AL . ° 5
4

. 128 6K log, (K)m?
R — log 0g(K)m (by the definition of N0
A, 5

Y

. 128 6K log, (K)m?
m, L, 2 1
= N(mt) 1 3log< 5 (use A, > ;A{j-z—fi‘l)

82 <6K 1og2(K)m2>

N(mvéz) -
< A2 5

v

O

Lemma B.8. For all phase m such that T, > Ts = 4096 H> log,(K) log (%‘%(K)), the number of samples used at

stage { where|a;| = K271, satisfies
5

256
N( ) Z ATIOg(26)

logl
4

Proof. We start from the condition T}, > 4096 H> log, (K) log (M) and obtain the inequality as follows

6K log,(K)
0
= T,, > 1024H log,(K) log (2€) (since § < 1)
Ko—t+1
=T, > 1024&127 log, (K) log (2¢) (by the definition Hy = max;>2iA;?)
%2—€+1
N T S 256
K271 logy(K) — A2524+1
4
N0 > 2000 by the definition of NV (™)
& 7A270g(e) (by the definition o )

Ko—rt+1
T2

T, > 4096 H; log, (K) log (

log (2¢)

256
o NmO > A2 log (2€) . (ar| = K27

lael
O

Lemma B.9 (Stirling’s formula (Das, 2016)). Let k, d be two positive integers such that 1 < k < n, then,

(1) =)= ()"
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C. BrakeBooster
C.1. Proof of BrakeBooster’s Correctness

Theorem 4.1 (Correctness). Let an algorithm .A be dp-correct and have a sample complexity of T}, (A). Suppose we run

BrakeBooster (Algorithm 2) denoted by M with input A, §, L, = [%], Ty > 1,and §p < ﬁ Then,

log 4edg
P (T(M) < 00, J(M) # 1) <.
In this proof, acute readers will notice that we often talk about events that happen in stage (r, ¢) without having a condition
that the algorithm has not stopped before. To deal with this without notational overload, we take the model where the
algorithm has already been run for all stages without stopping, and the user of the algorithm only reveals what happened
already and stops when the stopping condition is met. This way, we can talk about events in any stage without adding

conditions on whether the algorithm has stopped or not (and this is valid because the samples are independent between
stages).

Define
Qrc:={l € [L,.] : (-th trial
self-terminates and output incorrect arm}.
Note that
P (1(M) < 00, J(M) # 1)

=33 P(61,&) P (Jre ¢ {0,1})

< ;;P (Jre ¢ {0,1}),

where, &1, & are shorthand for
E={Vuer—1], v € [u], JAW, =0},
&y i={Yw € [¢c— 1], J. = 0}.
A stage outputting an incorrect arm index means that
1. More than half of the trials of A has self-terminated; i.e., vo < | L, /2] and thus > ie[K] Vi = Lyc—|Lrc/2].
2. The majority vote of those terminated trials is an incorrect arm index; i.e., > e (o} Vi = E; > ie(k) Vil

Thus, we have

@cl= ¥ wz 5o Le2)] > [ 52].

i€{2,.,K}
LTC
> z .

IP(a trial self-terminates and outputs an incorrect arm)
< do.

which implies that

r=1c=1 r=1c=1

S P £ 01) <3 3 (IQm

Algorithm A being dp-correct implies,

Hence by Lemma C.3 in the appendix with § = §; whose requirement §y < « = % is satisfied by the assumption of the
theorem,

> 3e (10> [5])

r=1c=1
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o0 T
L, 1
< e ——=log(——
< % > Xp( 1 g(4€50)>
S Yo (o L
= ex —_ O,
P 4 & 46(50

Since L = [w] , by evaluating an infinite sum (see Lemma C.2), we conclude the proof:

lOg 4edg
>~ ! r-2FL, 1
Z Xp | — 4 log( 4660 )

— 3 2
< Z 5 &XP (—rlog(l + 5))

exp (—log(1+ 2))
1 —exp (—log(1+ 2))
)
-= <.

5 =
One can see from above the reason why we set L, . to be oc 72"~ rather than oc 2"~ in the algorithm — without the extra
factor of r, the sum of will not be controlled.

@]

(geometric sum)

IN

C.2. Proof of BrakeBooster’s Exponential Stopping Tail
We prove a slightly more general version of Theorem 4.2.
Theorem C.1 (Exponential stopping tail; full version). Let an algorithm A be dg-correct and have a high probability
2
sample complexity of Ty, (A). Suppose we run BrakeBooster (Algorithm 2) with input A, 6, L1 = (%], T, > 1, and
4ed
S0 < (55)% Let Ty = 24T 1ogg(%)ljl where T* = Ty (A) V Ty. Then,

T
N

T 1
VT >Tp, P (T(./\/l) > T) < exp ( T68T7 (A)log, T In 50)
0

Proof. Letr* := min{r € Ny : T}, > T (A)}. Let T, be the total amount samples consumed up to and including stage
(r,c). Define R, . := {{ € [L, ] : {-th trial does not self-terminate }.

Let » > r*. Then,
P (r(M) > T0) < P(Jy 1, =0)
Note that the fact that a stage returns O implies that more than a half of the trials did not self-terminate. Thus
P(Jy—1,+ =0) <P (Jatleast (| L,_1 /2] + 1) trials that do not self-terminate )

er r*
S IP) (|R7‘1,r* Z L)
2
Since the trials in stage (r — 1, 7*) use samples more than 7 5 (A), by the sample complexity guarantee of A and Lemma C.3,
we have
erl r* erl r* 1
P | > ] < — " og ——
('R bl =7y ) eXp( 2 nge50>
20 1= (r — 1)L 1
Sexp<— (27“ My, 5) (Vi < &
0
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or=1=r"(p _ 1)L, 1
= exp (_ (r ) L1 In )

4 do
Note that by Lemma C.5, we have, Vr > 2,

- TlLl —1 2 r,c
To.> 2 or-l 2 s ppor s p <] ( )
2 g [ S ¥ ] T_0g2L1T1
Then,
_ Qr—r —1 1
IP’(T(M)Z Tc)zexp(— 1( —1)111)
4 do
2r—r*—1L1 1 .
<exp| ——rlh — rz2 =r-1>23)
8 do
e 2 In !
= eXx — —_—
Pl7 s "5,
o 27’71T1L17'2 n 1
= ex —_ f—
P 8T1’I“ .ot (50
Ty 1
< exp <8Tlr/23T In (50> (Theorem C.5)
T.c/3 1 _
<exp| ————=In— (Theorem C.4; T* :=T5 (A) v T1)
p( STir- 5= WV
e [ —ef3 g L
B P 64r - T* (S()
Tr.c/3 1 7. _
< exp <_&4T*10g2Tm In 50) (r=2,r <logy g3 <logyTr.c)
Hence,

_ T. . 1
Vr>rt Ye<r P(r(M)>T..) < e o
r>rtovesr B(r(M)> ’)—eXp< 1927 log, T.. néo)

Next, in order to obtain an exponential stopping tail guarantee, we need to upper bound P(7(M) > T) for every T that is
sufficiently large instead of those particular 7. .’s.

LetT > Tr*-i—l,l- We consider two cases.

Case 1. T € [T, ., Ty 1) forsomer > r*andc < r — 1.
In this case, we have

r,c+1 = Tr,c + /1—’1-[/127'_1 - T

Ty L2711 r
r,c+1 141
a 1 —
Tr,c N r,c
T\L.27 1y = T\Li or—1 .2
£V (Tre 2 =5+ -277001%)
3
2
(d)
<2 r>r"+1>2)
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This implies Tr,c <T< 2Tm. Then,
P(r(M)>T) <P(r(M)>T,,

| /\

1 - _
n ) (Tr,c S T < QTr,c)

Case2.T € [T, T,41,1) for some r > r*.
In this case,

Tr+1’1 = Trﬂa + T1L12T(T' =+ 1)

Tr_+1,1 1 T1L12_T(7“ +1)
Trgr Tr,r
Ty L0127 (r + 1) - Ly or—1 .2
§1+T1L1 Lor—1. .2 Ty 2 527701
4(r+1
=1+ %
r
—4 r>2)

Thus, we have Tr,r <T< 4TM and
P(r(M)>T) <P(r(M) =

1
< exp ( 1927 1og2 o 50>
<e ( In 1) (T, <T < AT,,)
T68T* log2 do
Therefore, in either case, we have
T>Twy1g = P (T(M) > T) exp (—_T In 1)
768T*log, T 0o

We conclude the proof by working out an explicit upper bound on T, 11 1 as follows:
Troy11 < Toeg1met1
<27 3(r* 4+ 1)2Ly Ty (Theorem C.5)

8T 16T*
<

- 3(log, 2Ly Ty (Theorem C.4)

167+
< 24T* log? (g )Ll
1

C.3. Utility Lemmas
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Proof.
ie a 27 ln< ! )
xp | —a - el
s=1 Y a 660
e a 1ln<1> +e a2L11n<1> +e a4L11<1> +
—exp | —a- = — xp | —a - — — xp | —a - — —
P a '\ B P Bdo P a " \Bd
<e a L In L +e a 2L, In L +e a 3L In L +
xp [ —a- — — xp [ —a - — — xp [ —a- — —_— =
=P a "\ B P a T\ Bd P o\ Bd,
exp (—a %ln (%{)))
= (geometric sum)
1exp(aoLojln<5150 >
Let [, > alln(i%). Then,
Bdg
L 1 2
1— —a-—In| == =1- —aln (14 =
exp( ar— n(ﬂ%)) exp( an( +§))
1
:1— a
(1+3)
>1-— 1 (a>1)
- (1+3) -
>1 ! 0<1
- (1+3) -
_2
3
Thus,
L 1
exp <a “1In (550)) 3 9
<—exp(—a-ln(1+>)),
L 1 2 1)
1 —exp (—a “Lln (ﬂ%))
which completes the proof. O
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Lemma C.3. Let € be an event from a random trial such that P(£) < ¢. Let « satisfy 6 < a < 1. Let N be the number of
trials where € holds true out of L independent trials. Then,

200 5o (3)

Proof. Recall the standard KL divergence based concentration inequality where /i, is the sample mean of n Bernoulli i.i.d.
random variables with head probability p:

Ve > 0,P(fi, —p <e) <exp(—nKL(p+ ¢, 1)) .
Note that N/L can be viewed as the sample mean of Bernoulli trials with y := P(£). Then,

P(N > al) = P(% > )
N
= P(f —p=a—p
< exp(—LKL(a, p)) (>35> p)

where (a) is by the following derivation:

(1—a)lni:3 :—(1—04)1111:2
— _(1_ oK
=—(1 a)ln(1+ 1—a>
>—(1- ).‘i‘:z vz, In(1 + z) < 2)
=—(a—p)
> —«
Hence,
P(N > aL) < exp <La ln(;:)> < exp <La 1n(§;)> (w=P¢&) <9

O

Lemma Cd4. Let T, , = 2"~} for some Ty > 1 and define T* := T* V Ty. Define r* := min{r € Ny : T,.,, > T*}.
Then,
F o 8T
r o
= log, T,

Proof. Consider two cases:
(i) r* > 2: In this case,
T* > Ty gy =27 2T
4T*)
T

= 7" <logy(
(i) r* < 1: Nothing to do here.
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Together, we have r* < 1V log, % <1V log, % <log, % where we use the fact that Va,b > 0,a V b < a + b and
log, (4T*/T1) > 2 > 0. O

Lemma C.5. Let TT,C be the total number of samples used in Algorithm 2 up to and including stage (r,c). If r > 2, ¢ € [r],
then

1 T
< , 3
2~ T22r_1T1L1 -
Proof. For the upper bound,
Tr,(‘ < 77 r < ZZUQu 1L1T1
u=1c=1

r—1 37’2L1T1 (6 < 27’2)

For the lower bound,

r—1 wu

v=1

u=1c=1
r—1
=TL, ZuQ QU Yy Ly eor 27t

u=1

=T\L, - <2T1 (r2—4r+6) 3) +TLy-c-r-2771
> Ty Ly - (2” (7’2 —47‘+6) . 3) ST Ly -2

—T\L - (2’"—1 (7“2 3+ 6) - 3)

_ Ol (2"—1 (2% 6r+12) - 6)

2
T\L T,L
=gt 2 T 2T’1(r276r+12>*6
2 2
T1L T L
> 121.2r_1.r2+ 121-2T_1(7“2—67”+9) (r>2)
T\L T,L
_ 11 1.2“1'742+ 1 1.2'r71(r73)2
2 2
> T12Ll Lgr=1 2
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D. Empirical studies

D.1. Empirical Evaluation of Successive Elimination (SE)

In this section we present the study of stopping time distribution of Successive Elimination (SE) (Even-Dar et al., 2006)
algorithm.

Experimental setup: We implemented SE in two different configurations, 1) Original version 2) Version with e-slack added
to the stopping condition. We set the number of arms 3, with mean rewards {1.0, 0.9, 0.9}. Noise follows N (0, 1). We set
0 = 0.01. We conduct 1000 trials and observe the stopping times of those trials. We forcefully terminated the trials that do
not stop until 30,000 time steps or 1,000,000 time steps. In Figure 5, 6 we have plotted the histograms of observed stopping

times for all the trials.

120
70 [0 eps =0.03
604 1001 eps = 0.01
eps = 0.05
8 501 5 801
S S
6 40 k]
E g 60
£ 301 €
2 2 401
20
104 20
5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Stopping time Stopping time
(a) Original version of SE (b) SE with e-slack added to the stopping condition

Figure 5. Histogram of stopping times (force stop after 30K rounds)

200
800 0 eps =0.03
1737 eps = 0.01
1504 eps = 0.05
w [%2)
= = 600
2 125 ©
= =
2 100 o
8 3 400
E s £
=2 =2
501 2001
25 I
0 . . . . I oL - . . . . .
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Stopping time le6 Stopping time
(a) Original version of SE (b) SE with e-slack added to the stopping condition

Figure 6. Histogram of stopping times (force stop after 1M rounds)

Observations: In the case of original version of SE, a considerable number of trials have not been terminated even after
30,000 time steps (Figure 5a). We have observed that all these trials have already eliminated the best arm, and thus we
expect that many of them will never stop. This is also confirmed by Figure 6a where most of the trials that did not stop after
30,000 time steps are still running after 1, 000, 000 time steps. This shows that a high probability stopping time bound does

not guarantee that all the trials will stop.

In the case of SE with e-slack added to the stopping condition, first, we can see that for ¢ = 0.01, 0.03, still some of the
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trials are not terminated even after 30,000 time steps. It takes up to 600, 000 time steps for all the trials to terminate. This is
significantly higher as discussed in the main part of the paper.

Moreover, once the best arm is eliminated, the rest of the procedure can be considered as uniform sampling when A = €.
Hence, as we have discussed in the main part of this paper, the stopping time distribution will follow (T, x)-exponential
stopping tail with 75 = ©(Ke~21n(1/6)) and k = ©(Ke~1). The same goes for more general cases as well. However our

proposed algorithms achieve a better (O(H; In(1/4)), Hy)-exponential stopping tail.

D.2. Empirical Evaluation of SE with Brakebooster

In this section, we examine the impact of incorporating the Brakebooster algorithm into the Successive Elimination (SE)
framework, where Brakebooster operates by taking SE as its input.

Experimental Setup: We consider a bandit problem with four arms, each associated with mean rewards of
{1.0,0.6,0.6,0.6}. The reward noise is drawn from a normal distribution N (0, 1). The confidence parameter is set
to d = 0.01. We perform 1000 independent trials and record the stopping times for each. Trials that do not terminate
within 1,000,000 time steps are forcefully stopped at that point. Figures 7a and 7b present histograms of the stopping
times observed across all trials for SE and SE augmented with BrakeBooster, respectively. Additionally, Figure 7c shows a
comparative cumulative distribution function (CDF), scaled over 1000 trials, for both SE and SE with BrakeBooster. We also
conduct the same set of experiments using a four-arm bandit problem with mean rewards {1.0,0.9,0.9,0.9}. Furthermore,
In these experiments, we employ a 1.2x growth factor for both the per-trial budget and the number of trials, in contrast to
the conventional doubling scheme, speculating that the exponential guarantee will still be preserved. The corresponding
results are presented in Figure 8.

Observations: The results show that the BrakeBooster mechanism ensures that all the instances stop. Furthermore Figure
7c and 8c shows that applying BrakeBooster on Successive Elimination helps to stop all the trials without sacrificing too
many samples (the CDF curve of BrakeBooster+SE catches up with that of SE very fast because the crossover point is at the
stopping time of ~ 2 x 10* for Figure 7c and ~ 0.05 x 10° for Figure 8c).
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(a) Successive Elimination (SE): Some trials (b) BrakeBooster + SE: All trials successfully (c) Both plots with CDF of stopping times
fail to stop. stop. shaded with respective colors

Figure 7. Histogram of stopping times for problem instance .A = {1.0,0.6, 0.6, 0.6} (force stop after 0.1M samples). Results from 1K
trials.

D.3. Empirical Evaluation of LUCB1, TS-TCI, and FC-DSH

In this section, we analyze the stopping times of LUCB1 (Kalyanakrishnan et al., 2012), TS-TCI (Jourdan et al., 2022), and
FC-DSH (ours).

Experimental Setup: For the implementation of FC-DSH algorithm, we deviate from the theoretical version presented in
the paper by reusing samples across rounds. We opt to implement this practical version to reflect a more efficient use of
data in empirical settings. We remark that the theoretical analysis can still be done by taking a union bound over the arms
just like how Successive Rejects (Audibert et al., 2010) analysis can be done with sample reuse. Furthermore, instead of
doubling the budget after each phase, we generalize the growth schedule by introducing a scaling parameter b, such that
T, = b™~'Ty, for phase m > 2. While our analysis focuses on the case b = 2, we speculate that the exponential guarantee
may hold for any value of b. In our experiments, we set b = 1.01 to allow for finer budget increment. Additionally, we adopt
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Figure 8. Histogram of stopping times for problem instance .4 = {1.0,0.9,0.9,0.9} (force stop after 1M samples). Results from 1K
trials.

the stopping rule proposed by (Jourdan et al., 2022) across all algorithms to ensure fair comparison.

In this experiment, we consider multiple bandit instances with varying number of arms K € {4,8,16}. For each instance,
the mean reward of the optimal arm is set to 1.0, while all sub-optimal arms have mean rewards of 0.6. For an instance, a
4-armed bandit instance is associated with mean rewards of {1.0,0.6,0.6,0.6}. The reward noise is drawn from a normal
distribution A'(0,1). The confidence parameter is set to § = 0.05. We perform 1000 independent trials and record the
stopping times for each. Trials that do not terminate within 1,000,000 time steps are forcefully stopped after that time step.
Figure 9, 10, and 11 illustrate the histograms and cumulative distribution functions (CDFs) of the stopping times observed
for LUCBI1, TS-TCI, and FC-DSH across instances with K € {4,8,16}.
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Figure 9. Histogram and CDF of stopping time of LUCB1, TS-TCI, and FC-DSH on the instance with K = 4.

Observations: First, the plots confirm that LUCB1, TS-TCI, and FC-DSH all successfully stops, in contrast to the Successive
Elimination (SE), which may fail to stop (Figure 7a). Secondly, unsurprisingly, the stopping time increase as the number of
K grows. Among the methods, TS-TCI exhibits the best performance, for K = 8 and K = 16, whereas FC-DSH yields the
longest stopping times.

Additional Experimental Setup: To further investigate the tail behavior of the stopping time distribution, we conduct an
additional experiment focusing on the tail probability P(X > x) as shown in Figure 12. Anticipating that the tail behavior
would become more apparent with a significantly larger number of trials, we increase the number of trials from 1000 to
1,000,000. The experiment is performed on a 4-armed bandit instance with mean rewards of {1.0,0.6,0.6,0.6} with all
other settings remain identical to those described earlier in this section.

Observations: Figure 12 confirms that FC-DSH exhibits a exponential tail stopping time. Unexpectedly, it does not provide
evidence that LUCBI1 exhibits a polynomial tail. If LUCB1 follows polynomial tail, we would expect to observe a linear
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Figure 10. Histogram and CDF of stopping time of LUCB1, TS-TCI, and FC-DSH on the instance with K = 8.
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Figure 11. Histograms and CDFs of stopping times of LUCB1, TS-TCI, and FC-DSH on the instance with K = 16.

decay trend in the plot; however, such a pattern does not emerge. There are two plausible interpretations: (i) LUCB1 may
exhibit an exponential tail, suggesting that existing theoretical guarantees are loose and warrant tighter analysis, (ii) LUCB1
indeed has a polynomial tail, but a much larger number of trials may be required to empirically verify it.

Furthermore, TS-TCI shows intriguing behavior. In the regime where stopping times fall between approximately 2,500 and
10,000, TS-TSC exhibits a roughly linear decay in log(P(X > z)). We conjecture that a trade-off exists: the aggressive
sampling approach of TS-TCI likely results in heavier-tailed stopping time distributions. In addition, the more aggressive
in sampling strategy, the faster the algorithm enters the linear decay regime. Obtaining a positive/negative answer to this
phenomenon is left as future work.
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Figure 12. Log of tail probability log(P(X > z)) curve on the instance with K = 4. Results from 1,000,000 trials.
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